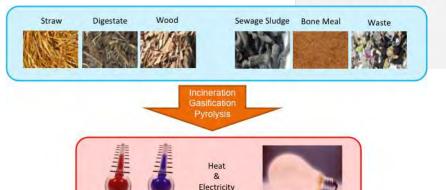

Erkenntnisse aus dem Projekt "EnerSpreu" für thermische Wertschöpfungspotentiale in der Landwirtschaft

Dipl.-Ing. Torsten Birth, M. Sc. Betty Appelt

Inhalt:

- 1. Fraunhofer-Institut für Fabrikbetrieb und –automatisierung IFF Magdeburg
- Motivation
- 3. Was wurde untersucht?
- 4. Fazit



Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF Magdeburg

Entwicklung und Untersuchung von Nutzungspfaden

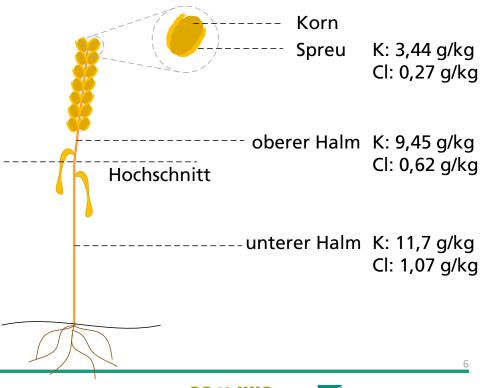
Digital Engineering and Operation

- Digitale Methoden, Werkzeuge und Modelle sicher und nachhaltig anwenden
- über den gesamten Lebenszyklus von Produkten und Betriebsmitteln, Produktionssystemen bis hin zu Fabriken
- Performanz der Produktion über den gesamten Lebenszyklus steigern

- EEG 2014 beendet den Ausbau der Biomasse-KWK Systeme
 - Export
 - Verbraucher = Produzent (Eigenstrom-/-wärmedeckung)
- Nutzungskonkurrenzen:
 - stofflich vs. energetisch
- Alternative: Reststoffe

Was will das EEG?

- Biomasse bzgl. Verbrennung / Vergasung kaum erwähnt
- Regierung will Güllebiogasanlagen und Abfallvergärung
- Was bleibt für Verbrennung und Vergasung?
 - Evtl. Förderfähige Reststoffe
 - Landwirtschaftliche Reststoffe (Stroh, Spreu, Gärrest etc.)
 - Industrielle Reststoffe (Rest aus Pflanzenölproduktion etc.)
 - Nicht Förderfähige Reststoffe
- Was ist am Ende die größte Konsequenz des neuen EEG?
 - Investormodelle nicht mehr attraktiv
 - Produzent/Nutzer/Vermarkter-Mischformen sind gefragt


Reststoffpotentiale

- Potential landwirtschaftlicher Reststoffe in D:
 - ca. 215 Mio. t/a
 - Stroh: ca. 30 Mio. t/a
 - davon nutzbar ca. 10 Mio. t/a

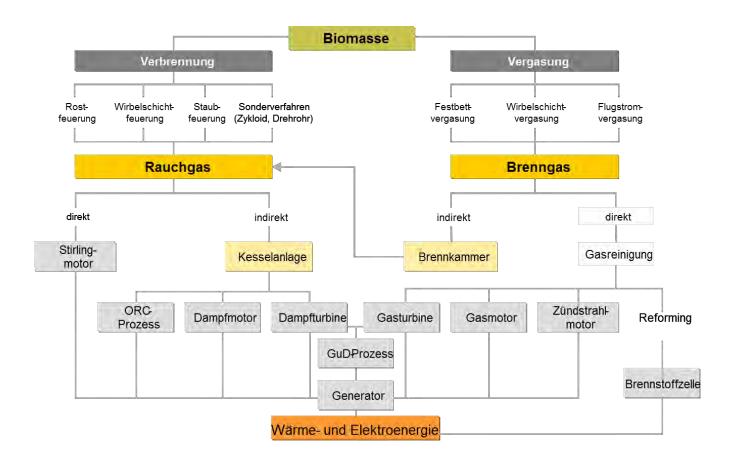
Reststoffpotentiale - Kompakternteverfahren

- innovatives Kompakternteverfahren der LLFG
 - simultane Stroh- und Spreu-Mitnahme
 - neuartiger landwirtschaftlicher Reststoff verfügbar (1,5 t/ha)
- Vorteile für den Landwirt:
 - höhere Lagerstabilität
 - Mitnahme von Fremdsamen
 - höhere Unabhängigkeit von klimatischen Erntebedingungen
 - geringere Stickstoffzehrung durch höheren Mitnahmeanteil

Quelle: "Das Kompakternteverfahren", LLFG Bernburg

Reststoffpotentiale

- Potential landwirtschaftlicher Reststoffe in D:
 - ca. 215 Mio. t/a
 - Stroh: ca. 30 Mio. t/a
 - davon nutzbar ca. 10 Mio. t/a
 - Spreu: ca. 10 Mio. t/a
 - Maisreste: ca. 5 Mio. t/a
 - davon Spindeln: ca. 1 Mio. t/a
 - Gärreste: mehre 1.000 t/a pro Biogasanlage


(bei ca. 8000 Biogasanlagen)

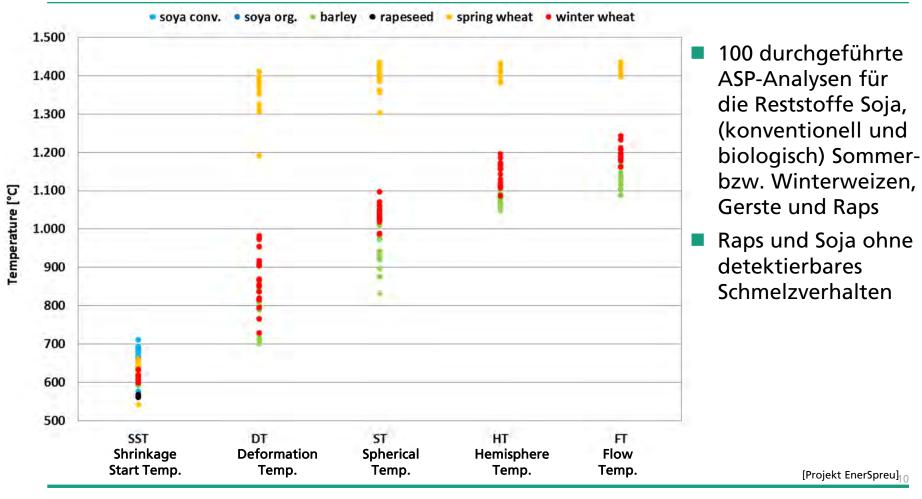
Brennstoffmischungen?

er#WIN 🚪

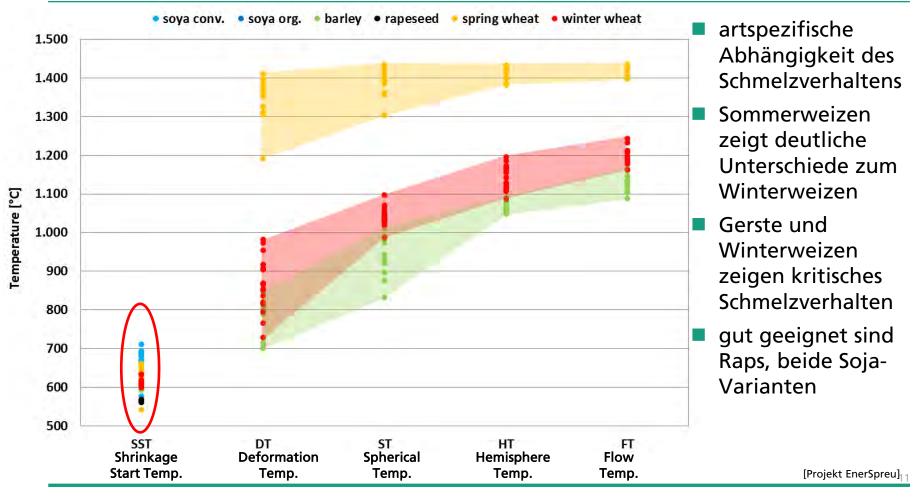
Verwertung im Rahmen von Verbrennungs- und Vergasungsanlagen

Brennstoffcharakteristik

		Raps	Gerste	Winterweizen	Sommerweizen	Soja bio	Soja konv
Wasser	[Ma.%]	12,16	10,45	8,15	4,09	4,82	6,78
Asche	[Ma.%]	6,74	7,35	7,86	9,55	6,88	5,46
Kohlenstoff	[Ma.%]	40,46	41,24	41,96	42,10	43,40	42,72
Wasserstoff	[Ma.%]	6,23	6,10	6,19	5,36	5,51	5,31
Stickstoff	[Ma.%]	0,19	0,48	0,76	0,61	0,79	0,62
Sauerstoff	[Ma.%]	34,12	33,26	34,58	37,81	39,57	39,94
Schwefel	[Ma.%]	1,44	1,35	0,90	0,10	0,00	0,10
Chlor	[Ma.%]	0,15	0,10	0,05	0,03	0,23	0,02
Но	[MJ/kg]	15,36	15,64	15,94	16,58	16,86	16,55
Hu	[MJ/kg]	13,92	14,24	14,56	15,31	15,54	15,23

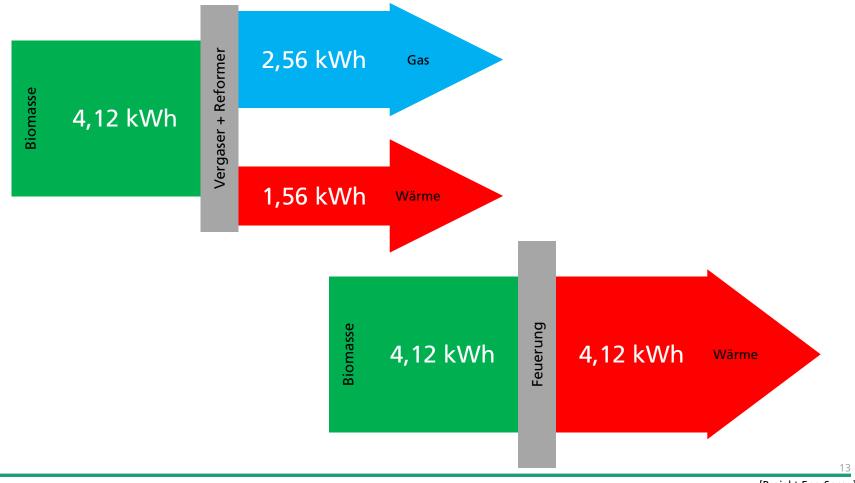

Kalium (Spreu: 3,44 g/kg Stroh: 11,7 g/kg) [LLFG]Chlor (Spreu: 0,27 g/kg Stroh: 1,07 g/kg) [LLFG]

[Projekt EnerSpreu] $_{9}$



Brennstoffcharakteristik

Brennstoffcharakteristik


Überblick

- Forschungsvorhaben zur energetischen Nutzung von landwirtschaftlichen Reststoffen des Kompakternteverfahrens mittels thermo-chemischer Konversion in Wirbelschichtanlagen
 - Verfahren: Verbrennung, Vergasung
 - Brennstoffe: Spreu/Spreuartiges: Weizen, Soja, Raps, Gerste
 - Additiv: Weißkalkhydrat
- Ergebnisse:
 - Schüttdichte 0,32 0,33 g/cm³ Stampfdichte 0,37 0,38 g/cm³
 - Feststoffdichte 1,55 1,58 g/cm³
 - Problematik der volumenbezogenen Energiedichte
 - Pelletierung von Stroh und Spreu
 - Verdichtung führt zu besserem Brennstoffzufuhrverhalten
 - Torrifizierung nicht unbedingt nötig
 - Verfahren: Verbrennung, Vergasung
 - Zufuhrsystem: Regelmäßiger Abwurf, Gleichmäßige Verteilung

Energiebereitstellung für die Landwirtschaft

Energiebereitstellung für die Landwirtschaft – Praxisbeispiele

2000 Sauen (Drewitz)

1900 MWh Wärmeverbrauch

220 ha

[Verband der Landwirtschaftskammern]

Ø Energieverbrauch* in der Innen- und Aussenwirtschaft				
Betriebszweig	ØStrom- verbrauch pro Jahr	ØHeizenergie- verbrauch pro Jahr	ØDiesel- verbrauch pro Jahr	
Sauenhaltung (inkl. Ferkel bis 28 kg)	270 kWh/ Sau	950 kWh/ Sau	-	
Mastschweine- haltung	35 kWh/ Platz	50 kWh/ Platz	15	
Milchvieh- haltung	400 kWh/ Kuh	=	=	
Kälbermast	100 kWh/ Platz	400 kWh/ Platz	=	
Hähnchenmast	0,3 kWh/ Tier	1,1 kWh/ Tier	=	
Acker	-	-	100 I/ha	
Grünland		-	80 I/ha	

^{*}Orientierungswerte aus Praxisbetrieben - keine abgesicherten Meßwerte

Energiebereitstellung für die Landwirtschaft – Praxisbeispiele

32000 Sauen (Gladau)

30400 MWh Wärmeverbrauch

3500 ha

[Verband der Landwirtschaftskammern]

Ø Energieverbrauch* in der Innen- und Aussenwirtschaft				
Betriebszweig	ØStrom- verbrauch pro Jahr	ØHeizenergie- verbrauch pro Jahr	ØDiesel- verbrauch pro Jahr	
Sauenhaltung (inkl. Ferkel bis 28 kg)	270 kWh/ Sau	950 kWh/ Sau	5	
Mastschweine- haltung	35 kWh/ Platz	50 kWh/ Platz	=	
Milchvieh- haltung	400 kWh/ Kuh	=	=	
Kälbermast	100 kWh/ Platz	400 kWh/ Platz	=	
Hähnchenmast	0,3 kWh/ Tier	1,1 kWh/ Tier	=	
Acker	-	-	100 l/ha	
Grünland	-	-	80 I/ha	

^{*}Orientierungswerte aus Praxisbetrieben - keine abgesicherten Meßwerte

Warum gibt es noch keine 10 Mio. Reststoffnutzungssysteme?

Energiebereitstellung für die Landwirtschaft – Allgemein

Weil es einfacher aussieht, als es ist...

Wirtschaftlichkeit: Standort abhängig

Umsetzbarkeit: viel Überzeugungsarbeit

weiteres Hauptproblem: Asche

Asche

KrW-/AbfG

- Bett- und Kesselaschen aus pflanzlichen, unbehandelten Stoffen
 - Abfall aus Kraftwerken und Verbrennungsanlagen
 - (Abfallschlüssel 10 01 01)

Aschegehalt: Spreu Stroh Gemisch 5 – 10 Ma.-%

DüMV

- Brennraumasche aus der Verbrennung von Spreu/Stroh (DüMV Anlage 2 Tabelle 7.3.16)
 - Abgabe in granulierter oder staubgebundener Form
 - vor einer Granulierung:
 - Siebdurchgang:
 - 98 % bei 0,63 mm
 - 90 % bei 0,16 mm
 - Siebdurchgang:
 - bei 0,1 mm max. 0,2 %,
 - bei 0,05 mm max. 0,05 %,
 - bei 0,01 mm max. 0,005 %.

Asche

Novelle Kalkdünger: (Übergangsfrist 31.12.2016) 90 % bei 6,3 mm 70 % bei 3,15 mm

Einsatz als Kalkdünger

- Kalkdünger aus pflanzlichen Stoffen: min. 15 % CaO in TM
 - Siebdurchgang:
 - 97 % bei 3,15 mm
 - 70 % bei 7,0 mm
- Kohlensaurer Kalk aus pflanzlichen Stoffen:
 - min. 70% CaCO3
 - max. 30 % Brennraumasche aus unbehandelten Pflanzenteilen
 - Düngemittelhinweis: "enthält basisch wirksame Pflanzenasche"

Asche

Grenzwerte für NPK-Dünger (DüMV Anlage 1 Abschnitt 2 Tabelle 2.4)

Nährstoff	Mindest- gehalt	Sommerweizen (ohne Additiv)	Winterweizen (Ohne Additiv)	Einheit
Stickstoff	3	n.b	n.b	Ma%
Phosphorpentoxid	5	0,09	0,11	Ma%
Kaliumoxid	5	0,65	0,9	Ma%

Asche aus Spreu/Stroh Gemisch nicht als alleiniger Dünger geeignet

Asche

- Schadstoffgrenzwerte (DüMV Anlage 2 Tabelle 1.4)
 - Getrenntes Erfassen von Ascheströmen
 - Analysen zur Bestimmung der Schadstoffe
 - Gegebenenfalls Entsorgung laut Deponieverordnung

Schadstoff	Gehalte des Ausgangs- Brennstoffs	Einheit
Blei	0,3 - 13	mg/kg TM
Cadmium	0,1	mg/kg TM
Chrom ges.	0,5 - 22	mg/kg TM
Quecksilber	0,1	mg/kg TM
Kupfer	3 - 11	mg/kg TM
Zink	58 - 147	mg/kg TM

Schadstoff	Grenz- wert	Einheit
Arsen	40	mg/kg TM
Blei	150	mg/kg TM
Cadmium	1,5	mg/kg TM
Chrom ges.	2	mg/kg TM
Nickel	80	mg/kg TM
Quecksilber	1	mg/kg TM
Thalim	1	mg/kg TM
PCB, PFT	30	ng/kg TM
Kupfer	100	mg/kg TM
Zink	400	mg/kg TM

- Nur Chrom als problematisch einzustufen
- Aufkonzentrierung in der Asche zu erwarten

Fazit

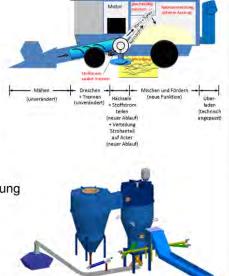
Energiebereitstellung für die Landwirtschaft – Allgemein

Das Fraunhofer IFF beschäftigt sich im Projekt "EnerSpreu" mit der Verbrennung und Vergasung von landwirtschaftlichen Reststoffen aus dem Kompakternteverfahren.

Materialien:

- Weizen-, Gersten- und Rapsspreu
- Sojastroh (Stängel, Hülsen, Blätter)

Projektinhalte:


- Brennstoffcharakterisierung
- Transport- und Lageruntersuchungen
- Verbrennungstests
- Vergasungstests

Gasaufbereitung zur motorischen Nutzung

 Reststoffuntersuchungen hinsichtlich Düngemitteleinsatz

Projektziele:

- Brennstoff- und Versuchsdatenbasis
- Erstes Konzept einer Verbrennungs-/ Vergasungsanlage

Was sind die Voraussetzungen für den Landwirt?

- 1000 ha Druschfläche
- Anpassung Ernteverfahren

Was muss der Landwirt tun?

- Stroh/Spreu bereitstellen
- Fläche für Energiewandlungsanlage stellen

Was erhält der Landwirt?

- Eigenwärmeversorung
- · Strom zur Versorgung und Einspeisung

Was schafft das Fraunhofer IFF als Voraussetzungen?

- Verbrennungs- und Vergasungstests (Ausbrand, Wirkungsgrad, Betriebsparameter)
- Reststoffkonditionierung und Reststoffklassifizierung als Düngemittel

Was liefert das Fraunhofer IFF?

- Anlagenkonzept
- Anlagenplanung
- Aufbaubegleitung und Inbetriebnahme
- Begleitung des Betriebes und der Optimierung
- Einbindungsunterstützung in die Liegenschaften

[Rumpler, Heidecke, Birth: DLG Feldtage]

Erkenntnisse aus dem Projekt "EnerSpreu" für thermische Wertschöpfungspotentiale in der Landwirtschaft

Vielen Dank für Ihre Aufmerksamkeit!

Torsten Birth Dipl.-Ing.

Projektleiter | Laborleiter Prozess- und Anlagentechnik Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

Sandtorstraße 22 | 39106 Magdeburg Telefon +49 391 4090-355 | Fax +49 391 4090-93-355 torsten birth@iff fraunhofer de

Fraunhofer

Betty Appelt

M. Sc.

Wissenschaftlicher Mitarbeiter Prozess- und Anlagentechnik Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

Sandtorstraße 22 | 39106 Magdeburg Telefon +49 391 4090-3495 betty.appelt@iff.fraunhofer.de

Ihr Technologiepartner für angewandte Forschung in Sachsen-Anhalt

Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

Sandtorstraße 22 39106 Magdeburg

Telefon: +49 391 4090-355

torsten.birth@iff.fraunhofer.de

www.iff.fraunhofer.de

Virtual Development and Training Centre des Fraunhofer IFF Magdeburg

Joseph-von-Fraunhofer-Straße 1 39106 Magdeburg

